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SUMMARY

A theoretical investigation of the velocity profiles for laminar
mixing of a compressible—fluid stream with a region of fluid at rest
has been mede assuming that the Prandtl number is unity. A method
which involves only quadratures is presented for calculasting the
veloclity profile in the mixing layer for an arbitrary value of the
free—-stream Mach number.

Detalled velocity profiles have been calculated for free—stream
Mach numbers of O, 1, 2, 3, and 5. TFor each Mach number, velocity
profiles are presented for both a linear and a 0.T6—power variation
of viscosity with absolute temperature. The calculations for a linear
variation are much simpler than those for a 0.76-power variation. It
is shown that by selecting the constant of proportionality in the
linear approximation such that it gives the correct value for the
viscosity in the high—temperature part of the mixing layer, the
resulting velocity profiles are in excellent agreement with those
calculated by a 0.T6~power variation.

INTRODUCTION

The veloclty profile for turbulent mixing at constant pressure
of an incompressible stream with a dead—air region has been calcu—
lated by several investigators, principally Tollmien (reference 1).
These calculations agree well with the availsble experimental data,
although the conventional assumptions regarding the mixing length of
a turbulent flow have since been shown by experiments-to be incorrect
(reference 2). The many difficulties encountered in making preciee
turbulent-mixing calculations are, of course, a consequence of the
extremely complicated mechanism governing all turbulent flows. In
contradistinction to the case of turbulent mixing, the mechanism
involved in laminar mixing is known, and the relation between
stresses and velocity gradients for laminar flow can be written
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explicitly in a relatively simple form. The velocity profiles for
laminar mixing, however, apparently have not as yet been calculated
even for the case ‘of incompressible flow. It is the purpose of the
present paper to calculate the veloclty proflles for laminar mixing
starting with zero boundary—layer thickness of an air stream of
arbltrary temperature and a dead—air region also of arbitrary temper—
ature. In cases where a laminar boundary layer of appreciable
thickness exists at the point where mixing begins, the results given
herein are not directly applicable in the initial part of the mixing
region. For such cases, 1t is necessary to make soms supplementary
approximation in order to apply the results.

Since the practical applications of laminar-mixing phenomenon
usually involve the flow of a compressible fluid, the present analy—
sis Includes the effects of compressibility. Examples of typical
flows wherein laminar mixing occurs can be found in the flow of
small—scale Jet pumps, in the flow behind the intersection of shock
waves of unequal strength, and In the flow immediately behind the
base of a body which has a laminar boundary la.yer.

SYIMBOIS AND NOTATIONS

c constant of proportionelity between viscosity and temperature
Cp specific heat at constent pressure

k coefficient of heat conduction

L characteristic length

M Mach number

D static pressure

[ Cpi
Pr Prandtl number <S£—>

1The present analysis was underteken as part of an investigation of
thls latter problem, and origlnally appeared as Appendix B of a
thesis "Base Pressure at Supersonic Velocities," submitted to the
California Institute of Technology, June 1948. The results of
some supplementary computations not given in the thesis have been
added for sake of completeness in the present report.
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S Sutherlands constant, approximately 216° F for ailr
T ebsolute temperature l
Ue free—stream velocity

u,v velocity components in x,y directlons, respectively

X,y Cartesian coordinates

o] thickness of mixing layer, taken between polnts where the
velocity is 0,01l and 0.99 of the free—stream velocity

m exponent of viscoslty variation with temperature

o] mass density

1l coefficient of viscoslty

v kinematic coefficient of viscosity

¥ stream function

dimensionless independent variable

Subscripts and Superscripts

* dimensionless variables as defined in equation (1k)
L free—stream conditions

o stagnation conditions of the free stream

d conditions in the dead-alr region

BASIC EQUATIONS AND ASSUMPTIONS
Basic Equations

A schematic 1llustration of the flow under conslderation is
shown in figure 1. In order to make the lamlner-mixing process
emenable to calculation, the usual assumptions are made that the
layer affected by viscosity is thin and has zero pressure gradient.
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Under these conditions the formal procedure for estimating the order
of megnitude of the various terms in the complete Navier—Stokes
equations for viscous compressible flow can be carried through in
precisely the same menner as is donme in the classical (Prandtl)
treatment of laminar boundary-dayer flows. In so doing, the dynamic
equation for the x direction reduces to the familiar boundary—
layer momentum equation.

oul oy 2 (u—a-u—> (1)

while the dynamic equation for the y direction reduces to zero on
both sides. In passing from the Navier—Stokes equation to (1) it

is to be noted that the usual boundary—layer assumption B/x <<1
is violated in the immediate vicinity of point O (fig. 1) Jjust as in
the case of boundary—layer flow over a plate.

By employing the same considerations on order of magnitudes as
were used for the complete Navier—Stokes equations, the complets
differential equation representing the balance of energy in viscous
compressible flow reduces to

u-a—(—gg-T—)-+p Aept) <kay>+u <ay> (2)

which is, of course, the usual energy equation for laminar boundary—
layer flow. In addition to equations (1) and (2), the equation
expressing conservation of mass is needed:

o(pu) . 3(pv)
= a"y =0 (3)

For a glven gas the variation of p and Cp wilith temperature 1is
known; hence, the foregoing system of three partial differential
equations is completed by the addition of the equation of state for
a region of constant pressure

ke)

= (%)

T
T, ?
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Assumptions

In order to solve the above system of equations, the following
essumptions are made:

l.cP
2. Pr

constant

cpu/k =

w
3. & C<E[%_> » where C 18 a constant depending on Tq and T_.

The second of these assumptions if often made in calculating boundary—
layer flows when only the velocity profile is desired and not the
thermal characteristics. The difference between the boundary-layer
veloclty distributions for Pr =1 and Pr = 0.73 18 small, as is
clearly shown by the numerical resulits of Emmons snd Brainerd
(reference 3). Since the mixing-layer and boundary—layer flows
differ only in the boundary conditions and not in the differential
equations, the effect of assumption 2 may be expected to be similar
in the two types of viscous flow. At moderate supersonic Mach
numbers, the use of Pr = 1 Zfor alir does not introduce more than
l1— or 2-percent error in the boundary—layer velocity proflle; and
hence, for all practical purposes, the mixing-layer velocity distri-—
bution calculations for Pr = 1 should be sufficiently accurate for
alir.

Assumptlion 3 needs some explanstion since the Introduction of a
constant C differing from wmity in the approximate relation between
viscosity and temperature apparently has not been used in previous
work. Usually C 1s teken as unity, and in such cases the approxi-—
metion p/ug = (T/Tw)® gives reliable results for a fized o,
provided the free—stream temperature is restricted to a certain
range. By introducing the factor C, the approximating equation can
be made to give the same value as an exact equation at any desired
temperature 1n the mixing layer regardless of T, or . Assuming
that Sutherland's equation,

u_ [ TN/2 Ty +8
p.,,‘(T.,,) T + 8 (5)

is exact for the varlation of wviscosity with temperature, then the
epproximate equation can be made exact at any given temperature T
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by meens of the relation )
i)
T AR T
Cl=—=) =\|= (6)
T T T +85
In particular, if the approximating equation is linear in temperature

(o = 1, thereby greatly simplifying the boundary—layer equations) and
the viscoslty is matched at the temperature T3 +then the above

equation gives
T, T + S
‘ =/;‘:‘T3‘+—s‘ | (7)
w —d

SOLUTION TO BASIC EQUATIONS

for the constant C.

As was Pirst pointed out by Prandtl in reference 4, and later
used to advaentage by Busemann end Crocco (references 5 and 6,
respectively), the consequence of the assumption Pr = 1 when
epplied to boundary—layer flow is that the temperature becomes a
function only of the velocity. Hence

opT = £(u) (8)

By substituting this relation into equation (2) and using equation (1)
In conjunction with the assumption Pr = 1, it follows that the
energy equation is automatically satisfied if the function #£(u)
satisfies the ordinary differential equation
e
—=+1=0 (9)
du
Integrating this equation, using the boundary conditions,

T =T, for u = T,

T = Ty,for u = 0 (10)
gives
2 2
£(u) = cpT = cpTq — = 2 cp(T, — Ta) + Ue® (11)
2 " T, 2

as the relationshlp between veloclty and temperature. Since the
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temperature determines the density, equation (11) also provides a
means for calculating the density as a function of the velocity.

Following the method first given for incompressible flow by
von Mises (reference T) and later used for compressible flow by
‘von Kérmin and Tsien (reference 8), a transformation is made to a
new set of Independent variables (x,up) , where V¥ 1is the stream
function. By using ¢ as one of the independent variasbles, the

continuity equation (3) is identically satisfied, and the velocity
components are given by

)
A A Wl (12)
p Oy p ox

Since the requirements of comservation of energy are fulfilled by
equation (11), and conservation of mass by equation (12), the only
equetion now remaining to be satisfied is the momentum equation (1).
If a transformation were made to a completely new set of independent
variables (s,¥), the transformation formula would be

S _9o¥9 30 _pud 9 0O
3 9y v dy 98 oy ¥ dy ds
O _%¥d 9893 __pvd 30
' Bx’ ox of Ox Os pmaw dx Os
Setting s =x,
os 3B
g—-o and -a—x'—l
so that the transformation formulae are?
9 pua
oy o B

(&), =5 &)
p BIF Bx IIJ'
2The varisbles held constant in a differentiation process are

explicitly indicated in those cases where embiguity could result
if the subscript notation were not used.
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It follows that

(@), s ) -
o(2) ()

Hence the momentum equation (1) in the (x,¥) system becomes

du 0o p du
£ ot 1
Py 3, = wapmaﬁf (13)

This can be put in dimensionless form by introducing the variables

* = & . I
u _Uco T* Tw
=X * = -
x*—L n o CT*D
o* = & * oV (14)
P N VaoUlLC \

Except for the parameter C appearing in the definition of 1[:*
and up¥, these variables are the same as those used by Kérman and
Tsien (reference 8). Remembering that Tg¥ the free—stream total—

temperature ratlo is given by

T 7’-—1 2
% = O _ ——
T5 T 1+ 5 M,

then the relation (equation (11)) between temperature and velocity
can be written as

T = Tg¥ — L M B0 4 (To*-Tg*)ur (15)

The momentum equation (13) becomes, using p*T* =1,

Su* _ e 3111 (16)
ox* B\lr*
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This 1s the basic equation which must be solved. The boundery
conditions of the problem are such that no boundery layer exists at
the point where mixing first begins. Under these conditions the
veloclty proflles will be similar st all points downstream of the
origin, and hence the velocity u¥ will be a function only of some
dimsnsionless veriable ¢. This dimensionless variable must involve
both ¥* and x*, and must be zero at the origin of coordinates
since the mixing—layer thickmess is also zero at the origin.
Therefore, let .

¢ =
where a and b are pure numbers which must be determined by the
condition that both sides of equation (16) for u* are functions
only of the single variable (. Setting
g(£) = w2 (17)

then the right side of equation (16) can be written as

d du* d¢ d qu* a-1 b> b O du* a1
g = g a y¥* x*" )= x¥' —\ g — a ¥*

oy at o/ o at op* at

from which it 1s obvious that in order for the right side of
equation (16) to be a function only of ¢, it is necessary that
a=1. With uw* = u*({) and a = 1, the partial differential
equation (16) reduces to the ordinary differential equation

—2b—. du* d < du*
b x* —_—
¢ g _C-d

at ~at

Consequently, in order for the entire equation to be s Function only
of ¢, it 1s also necessary that b = — 5 hence

L ¥
t = = A (18)
,./ x* o UgpVexC
and the ordinary differential equation for the velocity distribution
now reduces to
' t awr 4 du*
-2 - (e = (29)
2 4t at ag

Equation (19) is the same differential equation that was
obtained for boundary—layer flow -in reference 8. It is & nonlinear
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differentiel equation since g depends upon the velocity wu*. This
equation, however, can easily be converted into an integral equation
which can be solved by thée method of successive approximations. The
conversion is made by temporarily assuming that g 18 a known
function of ¢ (instead of u*) and formally epplying the standard
methods for solving first—order linear differential equations. The
result is

¢ ,
u*=C;|_f T at +co (20)
8 1
(o]
where , 4
-f, A at
F = e ° g (21)
The boundary conditions are
w=1latl=w (222)
w=0atl=—o (22v)

Letting ug* be the value of u* at { = 0, equation (20) can be
written as

¢
u*=clfo §d§+uo* (23)

The constant C; must satisfy two requirements

2 ng e (24) |
F F
L& [

Equation (23) is an integral equation for u¥, since both F
and g are functions of u¥*. By simply estimating a reasoneble
solution for u* as a function of {, a first aspproximation ju¥* to
the true solution can be calculated from

¢
1u¥ = Cy %Q + ouo¥
o

The zero—order approximations oF and og can be calculated
directly from ou* by using equations (15), (17), and (21). If this
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process 1ls repeated until a given approximation is the same as the
preceding one (to the degree of accuracy desired), and equation (2k)
is simultaneously satisfied, then the solution to the problem is
obtained. The iteration process turns out to be rapidly convergent,
requiring two or three iterations to obtain the function uw*({)
accurate to within 1 percent, and about four or five iterations to
obtain u*({) accurate to within a.few tenths of 1 percent.

4

In order to change the function u*(!) back to the physical
coordinates (x,y) a simple quadrature is necessary. By definition
of the stream functlon,

aw) <aw aw) aw)
— dx —_— df = dv = — — dx
dx /¢ \3t x c=a oY /x v dx/y

—§ dx+./U¢,v C at = —dy—g—v-dx

00

or

Hence, with x held constant, Integration glves .

/— f T (25)

from which u/Us as a function of y / v—:; can be determined. It

18 to be noted that no graphical or numerical differentiations are
needed at any point In the sbove iteration process, only gquadratures
are required.

As 18 evident from equation (16), the assumption * = CT*,
that is, ® = 1, makes the momentum equation (16) independent of
temperature, and hence density. Consequently, with ® = 1, the
solution to equation (16) in (x,¥) coordinates is independent of
Mach number. ¥For zero Mach number, T* =1, C = 1, and

/=) )&

Using this relastion the solution in physical (x,y) coordinates is
obtalned from the solution for zero Mach number by substituting
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equation (15) into equation (25) to give

' §
Uoo - _ULO' — 7—1 X
e, VoXC far (yJ VeoX >M=O z Mme»[ wa sy (Tortant (26

where the integral in the second term on the right side is carried
out for u*({) corresponding to Mg, = O.

RESULTS

Numerical calculations of the velocilty distributlion have been
mede for the followlng cases:

1. IJ-* = T*0-76; Mw-: O’ l, 2, 3, a.n.d 5
2. }.l*=CT*} Mm":o, l, 2’ 3, and.5

The various solutions for case 2 are obtained directly
(equation (26)) from the solution for Me = O without carrying out
the laborious iteration process that is necessary to obtain solutions
for case 1. All numerical results in physical coordinates

(yA/Uzyvax as independent variable) have been calculated for the
case Tg = Ty. If the dead—ailr temperature is radicelly different
from the free—stream stagnation temperature the proper velocity
distribution curves can be obtained by carrying out the integration
indicated in equation (25), since the function u*(¢{) 1in (x,y)
coordinates is independent of the thermal boundary conditions of the
problem.

Curves of uw*({) are shown in figure 2 for various Mach
nunbers. The corresponding curves in the physicel plane are shown
in figure 3 for the case p¥* = T*°'76, and in figure 4 for the case
u¥ = CT*, TIn the latter two figures the familiar Blasius curve for
the Incompressible laminar boundary—layer flow is shown for purposes
of comparison. The constent C +that is used in figure 4 is
determined by metching the viscosity coefficient at the temperature
Tq* = T,* according to equation (7).

The particuler curves shown in figure 4 apply for Te = 400° R.
Curves for any other temperature level T, differ only in the
constant factor C. ’ ’
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CONCLUDING REMARKS

A comparison is shown in figure 5 which illustrates the good
agreement between velocity distributions calculated for the two
approximations, u¥* = T¥0+78, gnd u* = CT*, For general use the
linear approximation is recommended since it gives results which
are practically as accurate as the former, yet does not require a
laborious iteration solution to be worked out for each Mach number.

In genersl, the laminar-mixing layer is several times thicker
than the leminar boundary layer, as is illustrated in figures 3 and
4 where, for purposes of comparison, the Blasius profile is also
shown. The rate of growth of mixing—layer thickness with increasing
Mach number is somewhat larger than the corresponding rate of growth
for a laminer boumdery layer. The curves in figure 3 indicate a

value of roughly
SM=0
for rate of growth of the mixing layer; whereas the corresponding

value for a laminar boundary layer (see reference 9, for example) is
approximately

=1 + 0.11 M2

BM >
'5—M; =1 + 0.09 M
This difference is to be expected since a larger percentage of low
density air exists in a mixing layer than in a boundary layer.

The foregoing statements, which indicate an increase in mixing—
layer thickness with increasing Mech number, are based on the assump—
tion that the Reynolds number (wa/vw) is held constant while the
Mach number is varied. In most experimental apparatus the Reynolds
number changes considerasbly with a variation in Mach number.
Consequently, depending upon the particular experimental method
employed, the observed rate of mixing in the x direction may be
elther increased or decreased if the Mach number is Increased.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.




14

NACA TN No. 1800

REFERENCES

Tollmlen, Walter: Calculation of Turbulent Expansion Processes.
NACA ™ RNo. 1085, 19L5.

ILiepmann, Hans Wolfgang, and Laufer, John: Investigations of
Free Turbulent Mixing. NACA TN No. 1257, 194T.

Emmons, H. W., and Bralnerd, J. G.: Temperature Effects in a
Laminar Compressible-Fluid Boundary Layer Along a Flat Plate.
Jour. App. Mech., vol. 8, no. 3, Sept. 1941, pp. A-105 — A-110.

Prandtl, Tudwlg: Eine Beziehung Zwischen Warme austausch und
Strommgswiderstand der Flussigkeiten, Physikalische Zeitschrift

vol. 11, 1910, p. 1072.

Busemann, Adolf: Gas Dynamics, Theory and Concepts. Chapter I,
Paragraph 9 in Handbuch der Experimentalphysik, vol. 4, Part I,
Ieipzig, Akademlsche Verlagsgesellschaft, 1931.

Crocco, Luigi: Trensmission of Heat From a Flat Plate to a
Fluid Flowing at a High Velocity. NACA T FNo. 690, 1932,

von Mises, Richard: Bemerknung zur hydrodynemik, Zeitschrift
fur angewandte Mathematik und Mechanik, vol. T, 1927.

von Kerman, Th., and Tsien, H. S.: Boundary Layer in Compressible
Fluids,. Jour. Aero. Sci., vol. 5, no. 6, April 1938, pp. 227-R32.

Iees, L.: The Stability of the Laminar Boundary Layer in a
Compressible Fluid. NACA TN No. 1360, 1947.

e D ——————— e — - - - ———————— S



Y ?‘
A Sy e
_— ‘__.5-— *‘
/
0 7= y’ ,
oo X
N O AN OO

N\ R

N\

\\\\\\\ =



[ S T ol

1.0

o.re
w0~ | A | = (7{)
Mo=2 | 777
Mu=3 -_E\ %//

Fl=
oA N\® |
Q -
» T N

, <T@ -
ik | ||
-2.0 -1.0 1.0 2.0 3.0
¥
i

Figure 2. —Vefocity distribufion in the (X, ¥) coordinate system.

9T

*ON ML VOVE

008T



NACA TN No. 1800

-10

—14

Figure 3. —Velocity distribution for 0.76 —power variation of

Mw=5-—\\
$§“§Vj
M, ,o/_/\:%\/%
— 7
= 2 .4%;.60.8 /
p 7/
dAN S/
VAV
177
1A 1/
N/
’// / //
L// A (£)
[
]
l // ~NAGA S ]
L

viscosity with temperature.

AN



18

NACA TN No. 1800

y/
N

28

.
/)

/)

\ \X/ / )/

RGN\

nl . p- | o =tS
C4 ; O°T T +5

M= \[C (for, T.=400°R)
0 1000
! 0.985

2 0.942

3 0.880 gz |
‘5 o0.762 ||

Figure 4. —Velocily distribution for linear variation of viscosity

with temperature.




NACA TN No. 1800 19

6

4 M.=5 —~ // A

A
L
/

] ="7;.; G\/_—T+s
— 14

Figure 5.—Comparison of velocity profile for a linear and
a 0.76-power variation of viscosily with temperature.

b ik




